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Outline

I. Implicit functions: an illustration with 3D surface representation

2. Neural Radiance Field (NeRF)
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Explicit vs Implicit Representation (2D)

Explicit: .
f(a) = (rcos(a),rsin(a))” £([0, 27)) Interface F(x,y) = 0

Domain: [0,27]

F(z,y) =+vx?>+y?—r

Domain: (x,y) € R?

Implicit:

Inside F(x,y) <0

= Circle is implicitly defined by {(z,y)|F(z,y) = 0}

f(a)) defines the interface Outside F(x,y) > 0
F(x,y) defines the Signed Distance Function of the circle

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC



Explicit vs Implicit Representation (3D)

Explicit:
F(x,y,z) =0

f(a, B) = (rsin(a) cos(B), —r cos(3), r sin(a) sin(3)) (x,Y,2)
Domain: « € [0;27], B8 € [0; 7]

ImpIicit

(z,y,2) = Va2 +y2 + 22 —r
Domain: (x,y,z) € R3

—> Sphere is implicitly defined by {(z,y, 2)|F(z,y,z) = 0}

f(a, B) defines the 3D surface F(x,y,z) > 0
F(z,y,z) defines the Signed Distance Function of the sphere
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Representing 3D surfaces

Explicit:

&"‘ -
A \
{ \'
Voxels Point clouds Depth Surface Normals
Implicit:
Signed distance field Mixture of primitives

(e.g gaussian mixtures)
Thomas Funkhouser’s talk at 3DGV seminar
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Signed Distance Field (SDF)

Maps each 3D points p to it’s signed distance to the object surface S. The sign
is positive if the p is inside the object, and negative otherwise.

SDF(p) = sign(p) - min [[p — ¢
qeS

Sign indicates whether the point p is inside (-) or outside (+) of the shape
Shape’s boundary as the zero-level-set of SDF
Allows for Constructive Solid Geometry (CSG) through boolean operations

o * Decision
*__ boundary
e  of implicit

o Surface

o . o
e SDF>0
®e

(] L]
(@ SDF <0
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Mixture of Gaussians

® Represents a shape as a mixture of local implicit functions (3D gaussians)

F(x,0)= ) fi(x,0)

i€[N]

fi (X, 92) = ¢; exp ( Z _(pz2¢i.2_ xd)’Z)
i.d

de{zx,y,z}

e Shape’s boundary is defined as an iso-level of the global implicit function

(@
=

[1] Genoval9
[2] Genova20
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Representing 3D surfaces with Implicit Functions

Pros:

Compared to point clouds: clearly defines the (iso-)surface

Compared to meshes: can continuously adapt to arbitrary topology
Compared to voxels: can be represented with few parameters (e.g. mixture of
simple implicit functions)

They are continuous in 3D

Can give analytic normals, can be applied with boolean operations, etc
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Representing 3D surfaces with Implicit Functions

Pros:
e Compared to point clouds: clearly defines the (iso-)surface

e Compared to meshes: can continuously adapt to arbitrary topology

e Compared to voxels: can be represented with few parameters (e.g. mixture of
simple implicit functions)

e They are continuous in 3D

e Can give analytic normals, can be applied with boolean operations, etc

e SDF is well-defined for only watertight meshes (there is an interior and an exterior)

o Need extra steps to visualize
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Converting Implicit Surfaces to meshes

Extract (zero-level) iso-surface

Mesh

Implicit function

Marching Cubes Ray marching

10
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Representing 3D surfaces with Implicit Functions

Pros:

Cons:

Compared to point clouds: clearly defines the (iso-)surface

Compared to meshes: can continuously adapt to arbitrary topology

Compared to voxels: can be represented with few parameters (e.g. mixture of simple implicit
functions

They are continuous in 3D

Can give analytic normals, can be applied with boolean operations, etc

Implicit functions is well-defined for only watertight meshes (there is an interior and an
exterior)

Need extra steps to visualize

Not all complex shapes can be efficiently / accurately represented with simple primitives

11
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Representing 3D surfaces

DeepSDF: Efficiently representing complex shapes by learning their SDF

Idea: Learn a continuous representation of 3D implicit surfaces

Query p = (x,y,z), Shape latent code Z Shape code

F(p: Z) = SDF(p, M) or

Query p = (x,y,2)

=> Continuity in 3D space AND shapes space [3] Parkl9

12
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Representing 3D surfaces

DeepSDF: Representing complex shapes by learning their SDF

[3] Parkl9
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http://www.youtube.com/watch?v=C_XNdGGs6qM

Take home message on Implicit Functions

Representation of a continuous field

Learned implicit functions: Iy Lo
e Can represent complex shapes
e Are continuous mappings because they use MLPs

® Are applicable to N-D data: 2D images, 3D shapes,
radiance fields

Visualization of implicit functions is done by extracting iso-surfaces:
|.  Running inference for multiple queries in input space
2. Rendering the result by combining the queries
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More works on Implicit Functions for 3D shape

Occupancy Networks | / S

PiFu and PiFuHD

)-7.|  [4] Mescheder|9

ﬁwaw

[5] Saitol9
[6] Saito20

|
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Courses and Seminars

Lecture on Implicit geometry

Lecture on Implicit surface

Lecture on Explicit & Implicit Surfaces

Thomas Funkhouser’s talk at 3DGV seminar

Princeton COS 426, Spring 2014 on Implicit Surfaces & Solid Representations
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Outline

|.  Implicit functions: an illustration with 3D surface representation

2. Neural Radiance Field (NeRF)

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC

17



Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations

® One of the first relevant works on scene geometry and appearence representation,
also benchmark for most of NeRF’s paper

Ray marching to estimate ray-geometry intersections Rendering

World coordinates
after n steps of Xfinal
ray marching

Ray Marching LSTM

(Gi41.Mis1, €4y ) = LSTM(v, by, ¢;)
v feature
i
vector

Sis1 Scene representation
Step length ®:R*-> R"

Scene representation
®:R*- R"

A

— a

- Pixel Generator R}
world coordinates ' Ix1conv | |

[7] Sitzmann |9

18
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Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations

o Represent a scene as a function @ which maps a spatial location x to a feature
representation v
®:R* 3R, x—=dx)=vV
® v may encode:
m visual information: surface color or reflectance
m geometry:signed distance of x
® Then learn a differentiable renderer to render v (using LSTM)

Ray marching to estimate ray-geometry intersections , Rendering
|
Ray Marching LSTM | World coordinates
(i1 Miss, €iar) = LSTM(vi, by, €) | afternsteps of | x g
v, | feature ! ray marching
| vector |
|
6i41 Scene representation | Scene representation
Step length ®:R3- R" | ®:R3> R"

|
|
|
Bt 7 |
— & |

» - - xl X ! A\l F A} )
Xi+1 kS :

) | .
[ i . — [7] Sitzmann 19
! Pixel Generat )"
world coordinates ' ‘10 s ::;: o > \\\!l 19
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Definition of radiance field

Y

e Radiance field is a 5-dimensional function which maps a 3D
location x and a direction in 3D sphere d to a color (r,g,b):

L :R%x5? — R?
L(x,d) = (r,g,b)

e Intuitively,“radiance” is the amount of light energy passing through a given point
in space, heading in a given direction

® In NeRF there is an additional output is volume density o € R
L(x,d) = (r,g,b,0)

http://reedbeta.com/blog/the-radiance-field/ 20
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Definition of radiance field

e Radiance field is a 5-dimensional function which maps a 3D location x,y,z and
a direction in 3D sphere d to a color (r,g,b):

(c) Radiance Distributions

[8] Mildenhall20

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC

21



Neural Radiance field (NeRF)

Idea:
e Continuous neural networks as a view-dependent volumetric scene representation

(xyz + view direction d)

® Using volumetric rendering to synthesize new views

f
(z,d) — I:|I:||:||:| — (RGBo)

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss

f‘ (x’y’:’ 6’ ¢) Ei |]1|4_1]|]_> (RGBU) \GM Ray 1 g Ray 1 /—\ i
@) [

Ray 2

R il

/ B-ct. )
‘Ray 2 q =

\

9
z

Ray Distance

[8] Mildenhall20
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Neural Radiance field (NeRF)

Volumetric rendering with ray tracing:

Opacity Predicted colors
b\ / t
) = /t T(t)o(x(t))c(x(t), d)dt, where T(t) :exp(— /t a(r(s))ds)

n

Volume density

Rendering model for ray r(t) = o + td:

N
C= E T,-aici
1=1

Ray

colors

Opacity

How much light is blocked earlier along ray: 3D volume

1—1
Ti = H(l — aj)
J=1

How much light is contributed by ray segment i: Camers From Matthew Tancik @Ttubingen AVG

St 8] Mildenhall20
Q; = 1 — e—o‘-,(St1 [ ] 93
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Neural Radiance field (NeRF)

Volumetric rendering with ray tracing:

Opacity Predicted colors
b\ / t
) = /t T(t)o(x(t))c(x(t), d)dt, where T(t) :exp(— /t a(r(s))ds)

n

Volume density

Rendering model for ray r(t) = 0 + td:  (approximation with numerical

N quadrature)
C= E T,-aici
=1

Ray

colors

Opacity

How much light is blocked earlier along ray: 3D volume

1—1
Ti = H(l — aj)
J=1

Camera From Matthew Tancik @TUubingen AVG
[8] Mildenhall20

How much light is contributed by ray segment i:

Q; = 1— e_aidti 24
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Neural Radiance field (NeRF)

Volumetric rendering with ray tracing:

Opacity Predicted colors
b\ / t
) = /t T(t)o(x(t))c(x(t), d)dt, where T(t) :exp(— /t a(r(s))ds)

n

Volume density

Rendering model for ray r(t) = 0 + td:  (approximation with numerical

N quadrature) o
C~ E liaic; -> differentiable w.r.t parameters
i=1 of MLP

colors

Opacity

How much light is blocked earlier along ray:

1—1
Ti = H(l — aj)
J=1

3D volume

How much light is contributed by ray segment i: Camers From Matthew Tancik @Ttubingen AVG

St 8] Mildenhall20
Q; = 1 — e—o‘-,(St1 [ ] o5
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Neural Radiance field (NeRF)

Tricks:
e Hierarchical Sampling: coarse to fine importance sampling

o  First sample coarsely along the ray with stratified sampling
m  Create Nc bins between tn and tf

m  For each bin, sample ti uniformly

(Ray-) Volume rendering C‘(r)

i—1
- 956
j=1

’i=1\ Y J
W
o  Then do importance sampling based on color weight W3
P plne & " A [T=I o,=0

A ——
(B)

<q | o 7. >0, 0; >0
O [ ~ [ ) U
w A N J Wi >

Y

Y
(A) (B) (©) ) [T;~0 wi=~0
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Neural Radiance field (NeRF)

Tricks:

e Positional encoding to map each input 5D coordinate into a higher dimensional

space
o Learning in high-frequency mappings is difficult to learn
v(p) = (sin(207rp), cos(207rp), cee sin(2L_17rp), cos(2L_17rp) )
o  Fourier Basis feature mapping allocates neurons to different spatial frequency

bands (frequency disentangling)

No Fourier features

With Fourier features

(a) Coordinate-based MLP (b) Image regression  (c) 3D shape regression  (d) MRI reconstruction  (e) Inverse rendering 27

(z,y) — RGB (z,y,z) — occupancy (z,y,z) — density  (z,y,z) — RGB, density



Neural Radiance field (NeRF)

Input  #Im. (Ne, N;y) | PSNRT SSIMt LPIPS)
1) No PE, VD, H Tyz 100 - (256, -) | 26.67 0906 0.136
2) No Pos. Encoding ryzfp 100 - (64,128) | 28.77 0924 0.108
3) No View Dependence | zyz 100 10 (64,128) | 27.66 0925 0.117
4) No Hierarchical ryzfp 100 10 (256, -) | 30.06 0.938 0.109
5) Far Fewer Images ryzfp 25 10 (64,128) | 27.78 0.925 0.107
6) Fewer Images xyz6¢ 50 10 (64, 128) | 29.79 0.940  0.096
7) Fewer Frequencies xyz0¢ 100 5 (64,128) | 30.59 0.944  0.088
8) More Frequencies ryz¢ 100 15 (64, 128) | 30.81 0.946  0.096
9) Complete Model .lyx.HO 100 10 (64, 128) | 31.01 0.947 0.081

3 T w e e - -
NN

Complete Model

Diffuse Synthetic 360° [41] [ Realistic Synthetic 360° | Real Forward-Facing [28]
Method PSNRtT SSIMtT LPIPS| | PSNRT SSIMt LPIPS] | PSNRT SSIMtT LPIPS|
SRN [42] 33.20  0.963 0.073 2226 0846  0.170 2284 0.668  0.378
NV [24] 29.62  0.929 0.099 26.05 0893  0.160 - -
LLFF [28] | 34.38  0.985 0.048 2488 0911 0.114 2413 0.798 0. 212
Ours 40.15 0991 0.023 31.01 0947 0.081 | 2650 0.811 0.250
Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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[8] Mildenhall20
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Neural Radiance field (NeRF)

[8] Mildenhall20

Michaél Ramamonijisoa,Van Nguyen Nguyen, Imagine - ENPC
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http://www.youtube.com/watch?v=JuH79E8rdKc&t=66

Neural Radiance field (NeRF)

NeRF in a nutshell:

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x3.209)—|[l[f|> (GBo)
.,./'[' F Ray 2 \Q‘E’MRH)V ; & Ray 1 /_\ a
““ e - ',—_- / ||.—gt !

Ray 2 /_\
/\, || M-gt.

Ray Distance

2
2

® Learn the radiance field of a scene based on a collection of calibrated images
o0 Use an MLP to learn continuous geometry and view-dependent appearance
e Use fully differentiable volume rendering with reconstruction loss

e Combines importance sampling and Fourier-basis encoding of 5D query to produce

high-fidelity novel view synthesis results

e Allows efficient storage of scenes (x3000 gain over voxelized representations)

30
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Neural Radiance field (NeRF)

Remaining challenges
e Handling dynamic scenes when acquiring calibrated views

® One network trained per scene - no generalization

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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Neural Radiance field (NeRF)

Remaining challenges
e Handling dynamic scenes when acquiring calibrated views

o D-NeRF: Neural Radiance Fields for Dynamic Scenes

o Deformable Neural Radiance Fields

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC

32



D-NeRF: Neural Radiance Fields for Dynamic Scenes

NeRF D-NeRF
= Only applicable to rigid scenes +  Applicable for rigid and non-rigid scenes
= 5D continuous function + 6D continuous function by considering
time-component as an additional input
= Requiring multiple views of a rigid + Requiring a single view per time instant
scene for non-rigid scenes.

,0‘

\\\ Wt

e =
,.r <" i ,‘\‘,\\\\*ﬁ. iii V2
i I Tl /” W |

{

o &

Wwﬁfff 3

Michaél Ramamonijisoa,Van Nguyen Nguyen, Imagine - ENPC Point of View & Tlme
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D-NeRF:

Neural Radiance Fields for Dynamic Scenes

e Deformation network W, :to predict deformation field between the scene at

time

instant t and the scene in canonical space (t=0)
0% i

Wik t) = {0 7
0, i e=—0

e Canonical network W :to predict color and density in canonical configuration

[12] Pumarola20™ p.

v,.(x,d) — (c,o0)

"?((X\ 2.t —»D[I["]—» (Ax,Ay,Az) \ (» X+AX,y+AY,2+AZ, 0,0 »[I\[I]jﬂn-. (R,G,B ,7)

Deformed Scene Scene Canonical Space Scene Canonical Space 34
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D-NeRF: Neural Radiance Fields for Dynamic Scenes

Volumetric rendering is the same as NeRF in canonical space:

Deformation NeRF’s
t k i
: : network Wi | 5p radiance field rendering o
6D radiance field — ) Rendering image
(canonical space)
Opacity Predicted colors

C(p,t) = /h * 7(>,t)a(p(h,t))c(p(/h,t),d)dh where p(h,t) = x(h) + ¥i(x(h),?),

\ e(p(h,), ), o(p(h, )] = L (p(h,1), ).

. h
Volume density and ‘T(h,t) = exp (—/ a(p(s,t))d8> .

-~

[12] Pumarola20

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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D-NeRF: Neural Radiance Fields for Dynamic Scenes

[12] Pumarola20

Michaél Ramamonijisoa,Van Nguyen Nguyen, Imagine - ENPC
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http://www.youtube.com/watch?v=lSgzmgi2JPw

Deformable Neural Radiance Fields

latent 1 latent appearance code
(ll‘f()]'“l}lt‘l()ll W
_—n s e p B iy # (6,0) view direction

(2, y,2)~@~ (I~ («

2,y )~ MLP —~ WY — RG B color

i ’ density o
e 4 deformation B e ' l(‘mplal(‘
ob\ol\atlon frame field canonical frame NeRF

Canonical

[13] Park20 Mk e Frame 37
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Deformable Neural Radiance Fields

TR

\II‘

M
‘ A

" .

\ \ .
A R (Vovel Visw Color

Mewa] View Depif

[13] Park20

Michaél Ramamonijisoa,Van Nguyen Nguyen, Imagine - ENPC
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http://www.youtube.com/watch?v=MrKrnHhk8IA&t=142

Deformable Neural Radiance Fields vs D-NeRF

Deformable Neural Radiance Fields

Submission history

From: Keunhong Park [view email]

[v1] Wed, 25 Nov 2020 18:55:04 UTC (47,887 KB)
[v2] Thu, 26 Nov 2020 01:52:45 UTC (47,887 KB)

We present the first method capable of photorealistically

reconstructing a non-rigidly deforming scene using pho-
tos/videos captured casually from mobile phones. Our ap-

proach —|D-NERF} augments neural radiance fields (NeRF)

+  Works on real data

= Relies on pretrained foreground dynamic
object segmentation

+  Formulation of elastic deformation
regularization

Does not explore time dependency

D-NeRF

Submission history

From: Albert Pumarola [view email]
[v1] Fri, 27 Nov 2020 19:06:50 UTC (16,352 KB)

ages. In this paper we introduce|D-NeRF,|a method that

extends neural radiance fields to a dynamic domain, allow-
ing to reconstruct and render novel images of objects under
rigid and non-rigid motions from a single camera moving
around the scene. For this purpose we consider time as an

= Works on synthetic data

= Works on scenes with isolated
object

+ Time as input

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC



Neural Radiance field (NeRF)

Remaining challenges

® One network trained per scene - no generalization
o PixelNeRF (CVPR’2| submission)

o General radiance field (ICLR’2| submission)

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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PixelNeRF: Neural Radiance Fields from One or Few Images

NeRF PixelNeRF
[8] Mildenhall20 [10]
Yu20
= Optimizing NeRF of each scene +  Training across multiple scenes to learn a
independently scene prior
= Requiring many calibrated views +  Address few-shot view synthesis task

with sparse set of views

+ Predicting a NeRF representation in the
camera coordinate system

+ Incorporate a variable number of
posed input views

= Using canonical coordinate frame

41
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PixelNeRF: Neural Radiance Fields from One or Few Images

Incorporating multiple views:
E

x(3) — [R(3)t(3)](x)
d® = RrR®4q

x(2) — [R(2)t(2)](x)
d® = Rr®@4q

7(x®) = KIR®t?)(x) @ w®) (7r(x(3)))
@ W (r(x®)) 4

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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PixelNeRF: Neural Radiance Fields from One or Few Images

Incorporating multiple views:
— — (RGBo)

e First, transform 5D input into coordinate system of each view given camera

transform

® Then, calculate intermediate feature vector for each view:

v = f (7(x( N d®; W (z(x®))
o X a7 )

e  Finally, aggregate with the average pooling operator { and passed into a the

final layer (0,¢) = fo (’L’f’ (V(l), . ,V(n)))

Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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|-view 2-view

T PSNR 1 SSIM | LPIPS 1 PSNR 1 SSIM | LPIPS

— Local 20.39 0.848 0.196 21.17 0.865 0.175
—Dirs 2193 0.885 0.139 2350 0.909 0.121
Full 2343 0911 0.104 2595 0939 0.071

Table 3: Ablation studies for ShapeNet chair reconstruction.
We show the benefit of using local features over a global code to
condition the NeRF network (—Local vs Full), and of providing
view directions to the network (—Dirs vs Full).

[10]
Yu20

Michaél Ramamonijisoa,Van Nguyen Nguyen, Imagine - ENPC

PixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF: Neural Radiance Fields from One or Few Images

V

[10]

Y) 45
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GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering

Q7r\ ks cs*/l, P g 57 1
- 7/ Ve I
-~ -~ ﬁ _______ / '
1
Observed Image Z,, | Vlewpmnt v
° 4
. >
pose 14y " e
- 5'\C5 KI 5% 1 V4
S - 1,
n N - P »
Implicit 3D Scene Representation
Observed Image 7 PixelNeRF
GRF [v1] Thu, 3 Dec 2020 18:59:54 UTC (9,768 KB)
[v1] Fri, 9 Oct 2020 14:21:43 UTC (7,696 KB) |EEE International Conference on Neural Radiance Fields (ICNeRF)
[v2] Sun, 29 Nov 2020 06:33:25 UTC (25,183 KB)
Related Work Lastly, note that concurrent
ICLR2! submission : s : —
work [ 7] adds image features to NeRF. A key difference is
that we operate in view rather than canonical space, which
OpenReview grades: 7, 6, 5, 4 makes our approach applicable in more general settings.

Moreover, we extensively demonstrate our method’s perfor-
L mance in few-shot view synthesis, while GRF shows ver
[ 1] Trevithick20 y 7

limited quantitative results for this task.
Michaél Ramamonjisoa,Van Nguyen Nguyen, Imagine - ENPC
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https://openreview.net/forum?id=cAvgPMAA3hb

More works on NeRF comling. sl Bl

/T';\'(\
e NeRF++:Analyzing and Improving Neural Radiance Fields [15] Zhang20
[
® iNeRF:Inverting Neural Radiance Fields for Pose Estimation [16] Yen-Chen20
t=90 t=180
Observed Image  Iterative Pose Estimation Pose Estimation Results:
w/ Unknown Pose w/ NeRF Model Overlaid NeRF Rendering and Observed Image
® NeRF in the Wild [14] Ricardo20...
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Awesome Neural Radiance Fields: _https://github.com/yenchenlin/awesome-NeRF

NeRF papers with code: https://paperswithcode.com/method/nerf
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